Amazon cover image
Image from Amazon.com

Statistical regression and classification: from linear models to machine learning

By: Material type: TextTextSeries: Texts in statistical sciencePublication details: Boca Raton CRC Press 2017Description: xxxviii, 489 pISBN:
  • 9781498710916
Subject(s): DDC classification:
  • 519.536 M2S8
Summary: Statistical Regression and Classification: From Linear Models to Machine Learning takes an innovative look at the traditional statistical regression course, presenting a contemporary treatment in line with today's applications and users. The text takes a modern look at regression: * A thorough treatment of classical linear and generalized linear models, supplemented with introductory material on machine learning methods. * Since classification is the focus of many contemporary applications, the book covers this topic in detail, especially the multiclass case. * In view of the voluminous nature of many modern datasets, there is a chapter on Big Data. * Has special Mathematical and Computational Complements sections at ends of chapters, and exercises are partitioned into Data, Math and Complements problems. * Instructors can tailor coverage for specific audiences such as majors in Statistics, Computer Science, or Economics. * More than 75 examples using real data. The book treats classical regression methods in an innovative, contemporary manner. Though some statistical learning methods are introduced, the primary methodology used is linear and generalized linear parametric models, covering both the Description and Prediction goals of regression methods. The author is just as interested in Description applications of regression, such as measuring the gender wage gap in Silicon Valley, as in forecasting tomorrow's demand for bike rentals. An entire chapter is devoted to measuring such effects, including discussion of Simpson's Paradox, multiple inference, and causation issues. Similarly, there is an entire chapter of parametric model fit, making use of both residual analysis and assessment via nonparametric analysis. https://www.crcpress.com/Statistical-Regression-and-Classification-From-Linear-Models-to-Machine/Matloff/p/book/9781498710916
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Item location Collection Shelving location Call number Status Date due Barcode
Books Vikram Sarabhai Library Rack 28-B / Slot 1427 (0 Floor, East Wing) Non-fiction General Stacks 519.536 M2S8 (Browse shelf(Opens below)) Available 195793

Statistical Regression and Classification: From Linear Models to Machine Learning takes an innovative look at the traditional statistical regression course, presenting a contemporary treatment in line with today's applications and users. The text takes a modern look at regression:
* A thorough treatment of classical linear and generalized linear models, supplemented with introductory material on machine learning methods.
* Since classification is the focus of many contemporary applications, the book covers this topic in detail, especially the multiclass case.
* In view of the voluminous nature of many modern datasets, there is a chapter on Big Data.
* Has special Mathematical and Computational Complements sections at ends of chapters, and exercises are partitioned into Data, Math and Complements problems.
* Instructors can tailor coverage for specific audiences such as majors in Statistics, Computer Science, or Economics.
* More than 75 examples using real data.
The book treats classical regression methods in an innovative, contemporary manner. Though some statistical learning methods are introduced, the primary methodology used is linear and generalized linear parametric models, covering both the Description and Prediction goals of regression methods. The author is just as interested in Description applications of regression, such as measuring the gender wage gap in Silicon Valley, as in forecasting tomorrow's demand for bike rentals. An entire chapter is devoted to measuring such effects, including discussion of Simpson's Paradox, multiple inference, and causation issues. Similarly, there is an entire chapter of parametric model fit, making use of both residual analysis and assessment via nonparametric analysis.


https://www.crcpress.com/Statistical-Regression-and-Classification-From-Linear-Models-to-Machine/Matloff/p/book/9781498710916

There are no comments on this title.

to post a comment.