Amazon cover image
Image from Amazon.com

Number theory, fourier analysis and geometric discrepancy

By: Material type: TextTextSeries: London Mathematical Society Student Texts 81Publication details: Cambridge Cambridge University Press 2014Description: x, 240 pISBN:
  • 9781107619852
Subject(s): DDC classification:
  • 512.7 T7N8
Summary: The study of geometric discrepancy, which provides a framework for quantifying the quality of a distribution of a finite set of points, has experienced significant growth in recent decades. This book provides a self-contained course in number theory, Fourier analysis and geometric discrepancy theory, and the relations between them, at the advanced undergraduate or beginning graduate level. It starts as a traditional course in elementary number theory, and introduces the reader to subsequent material on uniform distribution of infinite sequences, and discrepancy of finite sequences. Both modern and classical aspects of the theory are discussed, such as Weyl's criterion, Benford's law, the Koksma–Hlawka inequality, lattice point problems, and irregularities of distribution for convex bodies. Fourier analysis also features prominently, for which the theory is developed in parallel, including topics such as convergence of Fourier series, one-sided trigonometric approximation, the Poisson summation formula, exponential sums, decay of Fourier transforms, and Bessel functions. (http://www.cambridgeindia.org/showbookdetails.asp?ISBN=9781107619852)
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Item location Collection Shelving location Call number Status Date due Barcode
Books Vikram Sarabhai Library Rack 28-A / Slot 1365 (0 Floor, East Wing) Non-fiction General Stacks 512.7 T7N8 (Browse shelf(Opens below)) Available 183389

The study of geometric discrepancy, which provides a framework for quantifying the quality of a distribution of a finite set of points, has experienced significant growth in recent decades. This book provides a self-contained course in number theory, Fourier analysis and geometric discrepancy theory, and the relations between them, at the advanced undergraduate or beginning graduate level. It starts as a traditional course in elementary number theory, and introduces the reader to subsequent material on uniform distribution of infinite sequences, and discrepancy of finite sequences. Both modern and classical aspects of the theory are discussed, such as Weyl's criterion, Benford's law, the Koksma–Hlawka inequality, lattice point problems, and irregularities of distribution for convex bodies. Fourier analysis also features prominently, for which the theory is developed in parallel, including topics such as convergence of Fourier series, one-sided trigonometric approximation, the Poisson summation formula, exponential sums, decay of Fourier transforms, and Bessel functions. (http://www.cambridgeindia.org/showbookdetails.asp?ISBN=9781107619852)

There are no comments on this title.

to post a comment.