Amazon cover image
Image from Amazon.com

Differential and riemannian manifolds

By: Series: Graduate Texts in Mathematics, 160Publication details: 1995 Springer New YorkEdition: 3rd edDescription: xiii, 364 pISBN:
  • 9780387943381
Subject(s): DDC classification:
  • 516.36 L2D4
Summary: This is the third version of a book on Differential Manifolds; in this latest expansion three chapters have been added on Riemannian and pseudo-Riemannian geometry, and the section on sprays and Stokes' theorem have been rewritten. This text provides an introduction to basic concepts in differential topology, differential geometry and differential equations. In differential topology one studies classes of maps and the possibility of finding differentiable maps in them, and one uses differentiable structures on manifolds to determine their topological structure. In differential geometry one adds structures to the manifold (vector fields, sprays, a metric, and so forth) and studies their properties. In differential equations one studies vector fields and their integral curves, singular points, stable and unstable manifolds, and the like.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Item location Collection Shelving location Call number Status Date due Barcode
Books Vikram Sarabhai Library Rack 28-A / Slot 1385 (0 Floor, East Wing) Non-fiction General Stacks 516.36 L2D4 (Browse shelf(Opens below)) Available 179863

This is the third version of a book on Differential Manifolds; in this latest expansion three chapters have been added on Riemannian and pseudo-Riemannian geometry, and the section on sprays and Stokes' theorem have been rewritten.
This text provides an introduction to basic concepts in differential topology, differential geometry and differential equations. In differential topology one studies classes of maps and the possibility of finding differentiable maps in them, and one uses differentiable structures on manifolds to determine their topological structure. In differential geometry one adds structures to the manifold (vector fields, sprays, a metric, and so forth) and studies their properties. In differential equations one studies vector fields and their integral curves, singular points, stable and unstable manifolds, and the like.

There are no comments on this title.

to post a comment.