Amazon cover image
Image from Amazon.com

Distribution theory and applications

By: Contributor(s): Material type: TextTextSeries: Concrete and applicable mathematics vol. 9Publication details: New Jersey World Scientific 2010 Description: xvi, 201 pISBN:
  • 9789814304917
Subject(s): DDC classification:
  • 519.24
Summary: This book is an introductory course to the very important theory of distributions, as well as its applications in the resolution of partial differential equations (PDEs). It begins with a chapter of general interest, on the fundamental spaces (or test function spaces). The book advances and concludes with a chapter on Sobolev spaces, which are known to be very important in the resolution of PDEs. The very basic properties of distributions are examined in detail. Several formal methods have been first used, without rigorous justifications (Dirac function, principal value of Cauchy, finite parts of Hadamard). They find their natural frame in distribution theory. It is the same for Laplace transformation which is a fundamental tool in symbolic calculations.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Item location Shelving location Call number Status Date due Barcode
Books Vikram Sarabhai Library Rack 28-B / Slot 1404 (0 Floor, East Wing) General Stacks 519.24 K4D4 (Browse shelf(Opens below)) Available 170219

This book is an introductory course to the very important theory of distributions, as well as its applications in the resolution of partial differential equations (PDEs). It begins with a chapter of general interest, on the fundamental spaces (or test function spaces). The book advances and concludes with a chapter on Sobolev spaces, which are known to be very important in the resolution of PDEs. The very basic properties of distributions are examined in detail. Several formal methods have been first used, without rigorous justifications (Dirac function, principal value of Cauchy, finite parts of Hadamard). They find their natural frame in distribution theory. It is the same for Laplace transformation which is a fundamental tool in symbolic calculations.

There are no comments on this title.

to post a comment.