Analytic combinatorics in several variables
Material type:
- 9781107031579
- 511.6 P3A6
Item type | Current library | Item location | Collection | Shelving location | Call number | Status | Date due | Barcode | |
---|---|---|---|---|---|---|---|---|---|
Books | Vikram Sarabhai Library | Rack 28-A / Slot 1358 (0 Floor, East Wing) | Non-fiction | General Stacks | 511.6 P3A6 (Browse shelf(Opens below)) | Available | 181807 |
Mathematicians have found it useful to enumerate all sorts of things arising in discrete mathematics: elements of finite groups, configurations of ones and zeros, graphs of various sorts; the list is endless. Analytic combinatorics uses analytic techniques to do the counting: generating functions are defined and their coefficients are then estimated via complex contour integrals. This book is the result of nearly fifteen years work on developing analytic machinery to recover, as effectively as possible, asymptotics of the coefficients of a multivariate generating function. It is the first book to describe many of the results and techniques necessary to estimate coefficients of generating functions in more than one variable.
There are no comments on this title.