Introduction to measure and integration
Publication details: Cambridge Cambridge University Press 2008 Description: vi, 266 pISBN:- 9780521098045
- 515.42
Item type | Current library | Item location | Shelving location | Call number | Status | Date due | Barcode | |
---|---|---|---|---|---|---|---|---|
Books | Vikram Sarabhai Library | Rack 28-A / Slot 1377 (0 Floor, East Wing) | General Stacks | 515.42 T2I6 (Browse shelf(Opens below)) | Available | 167021 |
First published as chs. 1-9 of Kingman and Taylor Introduction to measure and probability 1966.
This paperback, which comprises the first part of Introduction to Measure and Probability by J. F. C. Kingman and S. J. Taylor, gives a self-contained treatment of the theory of finite measures in general spaces at the undergraduate level. It sets the material out in a form which not only provides an introduction for intending specialists in measure theory but also meets the needs of students of probability. The theory of measure and integration is presented for general spaces, with Lebesgue measure and the Lebesgue integral considered as important examples whose special properties are obtained. The introduction to functional analysis which follows covers the material to probability theory and also the basic theory of L2-spaces, important in modern physics. A large number of examples is included; these form an essential part of the development. (Source: www.amazon.com)
There are no comments on this title.