Amazon cover image
Image from Amazon.com

Introduction to measure and integration

By: Publication details: Cambridge Cambridge University Press 2008 Description: vi, 266 pISBN:
  • 9780521098045
Subject(s): DDC classification:
  • 515.42
Summary: This paperback, which comprises the first part of Introduction to Measure and Probability by J. F. C. Kingman and S. J. Taylor, gives a self-contained treatment of the theory of finite measures in general spaces at the undergraduate level. It sets the material out in a form which not only provides an introduction for intending specialists in measure theory but also meets the needs of students of probability. The theory of measure and integration is presented for general spaces, with Lebesgue measure and the Lebesgue integral considered as important examples whose special properties are obtained. The introduction to functional analysis which follows covers the material to probability theory and also the basic theory of L2-spaces, important in modern physics. A large number of examples is included; these form an essential part of the development. (Source: www.amazon.com)
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Item location Shelving location Call number Status Date due Barcode
Books Vikram Sarabhai Library Rack 28-A / Slot 1377 (0 Floor, East Wing) General Stacks 515.42 T2I6 (Browse shelf(Opens below)) Available 167021

First published as chs. 1-9 of Kingman and Taylor Introduction to measure and probability 1966.

This paperback, which comprises the first part of Introduction to Measure and Probability by J. F. C. Kingman and S. J. Taylor, gives a self-contained treatment of the theory of finite measures in general spaces at the undergraduate level. It sets the material out in a form which not only provides an introduction for intending specialists in measure theory but also meets the needs of students of probability. The theory of measure and integration is presented for general spaces, with Lebesgue measure and the Lebesgue integral considered as important examples whose special properties are obtained. The introduction to functional analysis which follows covers the material to probability theory and also the basic theory of L2-spaces, important in modern physics. A large number of examples is included; these form an essential part of the development. (Source: www.amazon.com)

There are no comments on this title.

to post a comment.