Amazon cover image
Image from Amazon.com

The surprising mathematics of longest increasing subsequences

By: Material type: TextTextSeries: Institute of mathematical statistics textbooksPublication details: Cambridge university press 2015 New YorkDescription: xi, 353 pISBN:
  • 9781107428829
Subject(s): DDC classification:
  • 511.6 R6S8
Summary: In a surprising sequence of developments, the longest increasing subsequence problem, originally mentioned as merely a curious example in a 1961 paper, has proven to have deep connections to many seemingly unrelated branches of mathematics, such as random permutations, random matrices, Young tableaux, and the corner growth model. The detailed and playful study of these connections makes this book suitable as a starting point for a wider exploration of elegant mathematical ideas that are of interest to every mathematician and to many computer scientists, physicists and statisticians. The specific topics covered are the Vershik-Kerov–Logan-Shepp limit shape theorem, the Baik–Deift–Johansson theorem, the Tracy–Widom distribution, and the corner growth process. This exciting body of work, encompassing important advances in probability and combinatorics over the last forty years, is made accessible to a general graduate-level audience for the first time in a highly polished presentation. http://www.cambridge.org/catalogue/catalogue.asp?isbn=9781107428829
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Item location Collection Shelving location Call number Status Date due Barcode
Books Vikram Sarabhai Library Rack 28-A / Slot 1358 (0 Floor, East Wing) Non-fiction General Stacks 511.6 R6S8 (Browse shelf(Opens below)) Available 194433

Table of Contents:


1. Longest increasing subsequences in random permutations
2. The Baik–Deift–Johansson theorem
3. Erdős–Szekeres permutations and square Young tableaux
4. The corner growth process: limit shapes
5. The corner growth process: distributional results


In a surprising sequence of developments, the longest increasing subsequence problem, originally mentioned as merely a curious example in a 1961 paper, has proven to have deep connections to many seemingly unrelated branches of mathematics, such as random permutations, random matrices, Young tableaux, and the corner growth model. The detailed and playful study of these connections makes this book suitable as a starting point for a wider exploration of elegant mathematical ideas that are of interest to every mathematician and to many computer scientists, physicists and statisticians. The specific topics covered are the Vershik-Kerov–Logan-Shepp limit shape theorem, the Baik–Deift–Johansson theorem, the Tracy–Widom distribution, and the corner growth process. This exciting body of work, encompassing important advances in probability and combinatorics over the last forty years, is made accessible to a general graduate-level audience for the first time in a highly polished presentation.


http://www.cambridge.org/catalogue/catalogue.asp?isbn=9781107428829


There are no comments on this title.

to post a comment.