A sequential introduction to real analysis
Series: Essential textbooks in mathematics; vol. 1Publication details: World ScientificPublishing 2016 LondonDescription: xxii, 251 pISBN:- 9781783267835
- 515 S7S3
Item type | Current library | Item location | Collection | Shelving location | Call number | Status | Date due | Barcode | |
---|---|---|---|---|---|---|---|---|---|
Books | Vikram Sarabhai Library | Rack 28-A / Slot 1373 (0 Floor, East Wing) | Non-fiction | General Stacks | 515 S7S3 (Browse shelf(Opens below)) | Available | 191408 |
Table of Contents:
1. Basic Properties of the Set or Real Numbers
2. Real Sequences
3. Limit Theorems
4. Subsequences
5. Series
6. Continuous Functions
7. Some Symbolic Logic
8. Limits of Functions
9. Differentiable Functions
10. Power Series
11. Integration
12. Logarithms and Irrational Powers
13. What are the Reals?
Real analysis provides the fundamental underpinnings for calculus, arguably the most useful and influential mathematical idea ever invented. It is a core subject in any mathematics degree, and also one which many students find challenging. A Sequential Introduction to Real Analysis gives a fresh take on real analysis by formulating all the underlying concepts in terms of convergence of sequences. The result is a coherent, mathematically rigorous, but conceptually simple development of the standard theory of differential and integral calculus ideally suited to undergraduate students learning real analysis for the first time.
This book can be used as the basis of an undergraduate real analysis course, or used as further reading material to give an alternative perspective within a conventional real analysis course.
(http://www.worldscientific.com/worldscibooks/10.1142/p1032)
There are no comments on this title.