Amazon cover image
Image from Amazon.com

The numerical solution of the American option pricing problem: finite difference and transform approaches

By: Contributor(s): Material type: TextTextPublication details: New Jersey World Scientific 2015Description: ix, 212 pISBN:
  • 9789814452618
Subject(s): DDC classification:
  • 332.6423 C4N8
Summary: The early exercise opportunity of an American option makes it challenging to price and an array of approaches have been proposed in the vast literature on this topic. In The Numerical Solution of the American Option Pricing Problem, Carl Chiarella, Boda Kang and Gunter Meyer focus on two numerical approaches that have proved useful for finding all prices, hedge ratios and early exercise boundaries of an American option. One is a finite difference approach which is based on the numerical solution of the partial differential equations with the free boundary problem arising in American option pricing, including the method of lines, the component wise splitting and the finite difference with PSOR. The other approach is the integral transform approach which includes Fourier or Fourier Cosine transforms. Written in a concise and systematic manner, Chiarella, Kang and Meyer explain and demonstrate the advantages and limitations of each of them based on their and their co-workers' experiences with these approaches over the years. (http://www.worldscientific.com/worldscibooks/10.1142/8736)
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Item location Collection Shelving location Call number Status Date due Barcode
Books Vikram Sarabhai Library Rack 19-B / Slot 724 (0 Floor, West Wing) Non-fiction General Stacks 332.6423 C4N8 (Browse shelf(Opens below)) Available 188666

The early exercise opportunity of an American option makes it challenging to price and an array of approaches have been proposed in the vast literature on this topic. In The Numerical Solution of the American Option Pricing Problem, Carl Chiarella, Boda Kang and Gunter Meyer focus on two numerical approaches that have proved useful for finding all prices, hedge ratios and early exercise boundaries of an American option. One is a finite difference approach which is based on the numerical solution of the partial differential equations with the free boundary problem arising in American option pricing, including the method of lines, the component wise splitting and the finite difference with PSOR. The other approach is the integral transform approach which includes Fourier or Fourier Cosine transforms. Written in a concise and systematic manner, Chiarella, Kang and Meyer explain and demonstrate the advantages and limitations of each of them based on their and their co-workers' experiences with these approaches over the years.
(http://www.worldscientific.com/worldscibooks/10.1142/8736)

There are no comments on this title.

to post a comment.