Amazon cover image
Image from Amazon.com

Course in ordinary differential equations

By: Contributor(s): Material type: TextTextPublication details: Boca Raton Chapman & Hall/CRC 2007 Description: 667 pISBN:
  • 9781584884767
Subject(s): DDC classification:
  • 515.352
Summary: A Course in Ordinary Differential Equations focuses on applications and methods of analytical and numerical solutions, emphasizing approaches used in the typical engineering, physics, or mathematics student's field of study. Stressing applications wherever possible, the authors have written this text with the applied math, engineer, or science major in mind. It includes a number of modern topics that are not commonly found in a traditional sophomore-level text. For example, Chapter 2 covers direction fields, phase line techniques, and the Runge-Kutta method; another chapter discusses linear algebraic topics, such as transformations and eigenvalues. Chapter 6 considers linear and nonlinear systems of equations from a dynamical systems viewpoint and uses the linear algebra insights from the previous chapter; it also includes modern applications like epidemiological models. With sufficient problems at the end of each chapter, even the pure math major will be fully challenged.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Item location Shelving location Call number Status Date due Barcode
Books Vikram Sarabhai Library Rack 28-A / Slot 1375 (0 Floor, East Wing) General Stacks 515.352 S9C6 (Browse shelf(Opens below)) Available 164824

A Course in Ordinary Differential Equations focuses on applications and methods of analytical and numerical solutions, emphasizing approaches used in the typical engineering, physics, or mathematics student's field of study. Stressing applications wherever possible, the authors have written this text with the applied math, engineer, or science major in mind. It includes a number of modern topics that are not commonly found in a traditional sophomore-level text. For example, Chapter 2 covers direction fields, phase line techniques, and the Runge-Kutta method; another chapter discusses linear algebraic topics, such as transformations and eigenvalues. Chapter 6 considers linear and nonlinear systems of equations from a dynamical systems viewpoint and uses the linear algebra insights from the previous chapter; it also includes modern applications like epidemiological models. With sufficient problems at the end of each chapter, even the pure math major will be fully challenged.

There are no comments on this title.

to post a comment.