Normal view MARC view ISBD view

Hidden markov models for time series: an introduction using R

By: Zucchini, Walter.
Contributor(s): MacDonald, Iain L [Co-author] | Langrock, Roland [Co-author].
Material type: materialTypeLabelBookSeries: Chapman & Hall/CRC Monographs on Statistics & Applied Probability. Publisher: Boca Raton CRC Press Taylor and Francis Group 2016Edition: 2nd.Description: xxviii, 370 p.ISBN: 9781482253832.Subject(s): Time-series analysis | Markov processes | R - computer program language | Hidden-Markov modelDDC classification: 519.233 Summary: Hidden Markov Models for Time Series: An Introduction Using R, Second Edition illustrates the great flexibility of hidden Markov models (HMMs) as general-purpose models for time series data. The book provides a broad understanding of the models and their uses. After presenting the basic model formulation, the book covers estimation, forecasting, decoding, prediction, model selection, and Bayesian inference for HMMs. Through examples and applications, the authors describe how to extend and generalize the basic model so that it can be applied in a rich variety of situations. The book demonstrates how HMMs can be applied to a wide range of types of time series: continuous-valued, circular, multivariate, binary, bounded and unbounded counts, and categorical observations. It also discusses how to employ the freely available computing environment R to carry out the computations. Features Presents an accessible overview of HMMs Explores a variety of applications in ecology, finance, epidemiology, climatology, and sociology Includes numerous theoretical and programming exercises Provides most of the analysed data sets online New to the second edition A total of five chapters on extensions, including HMMs for longitudinal data, hidden semi-Markov models and models with continuous-valued state process New case studies on animal movement, rainfall occurrence and capture–recapture data https://www.crcpress.com/Hidden-Markov-Models-for-Time-Series-An-Introduction-Using-R-Second-Edition/Zucchini-MacDonald-Langrock/p/book/9781482253832
Tags from this library: No tags from this library for this title. Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Current location Item location Collection Call number Status Date due Barcode
Books Vikram Sarabhai Library
Slot 1405 (0 Floor, East Wing) Non-fiction 519.233 Z8H4 (Browse shelf) Available 195225

Hidden Markov Models for Time Series: An Introduction Using R, Second Edition illustrates the great flexibility of hidden Markov models (HMMs) as general-purpose models for time series data. The book provides a broad understanding of the models and their uses.

After presenting the basic model formulation, the book covers estimation, forecasting, decoding, prediction, model selection, and Bayesian inference for HMMs. Through examples and applications, the authors describe how to extend and generalize the basic model so that it can be applied in a rich variety of situations.

The book demonstrates how HMMs can be applied to a wide range of types of time series: continuous-valued, circular, multivariate, binary, bounded and unbounded counts, and categorical observations. It also discusses how to employ the freely available computing environment R to carry out the computations.

Features

Presents an accessible overview of HMMs
Explores a variety of applications in ecology, finance, epidemiology, climatology, and sociology
Includes numerous theoretical and programming exercises
Provides most of the analysed data sets online

New to the second edition

A total of five chapters on extensions, including HMMs for longitudinal data, hidden semi-Markov models and models with continuous-valued state process
New case studies on animal movement, rainfall occurrence and capture–recapture data


https://www.crcpress.com/Hidden-Markov-Models-for-Time-Series-An-Introduction-Using-R-Second-Edition/Zucchini-MacDonald-Langrock/p/book/9781482253832

There are no comments for this item.

Log in to your account to post a comment.

Powered by Koha