Optimal transportation: theory and applications

Contributor(s): Ollivier, Yann [Editor] | Pajot, Herve [Editor] | Villani, Cedric [Editor]
Material type: TextTextSeries: Publisher: Cambridge Cambridge University Press 2014Description: x, 306 p.ISBN: 9781107689497Subject(s): Transportation problems - Programming | Mathematical optimization | Combinatorial analysis | Matrices | Combinatorial analysis - fast | Mathematical optimization - fast | Matrices - fast | Transportation problems - Programming - fastDDC classification: 519.6 Summary: The theory of optimal transportation has its origins in the eighteenth century when the problem of transporting resources at a minimal cost was first formalised. Through subsequent developments, particularly in recent decades, it has become a powerful modern theory. This book contains the proceedings of the summer school 'Optimal Transportation: Theory and Applications' held at the Fourier Institute in Grenoble. The event brought together mathematicians from pure and applied mathematics, astrophysics, economics and computer science. Part I of this book is devoted to introductory lecture notes accessible to graduate students, while Part II contains research papers. Together, they represent a valuable resource on both fundamental and advanced aspects of optimal transportation, its applications, and its interactions with analysis, geometry, PDE and probability, urban planning and economics. Topics covered include Ricci flow, the Euler equations, functional inequalities, curvature-dimension conditions, and traffic congestion.(http://www.cambridge.org/us/academic/subjects/mathematics/geometry-and-topology/optimal-transport-theory-and-applications?format=PB)
Tags from this library: No tags from this library for this title. Log in to add tags.
    Average rating: 0.0 (0 votes)
Item type Current location Item location Collection Call number Status Date due Barcode
Books Vikram Sarabhai Library
Slot 1680 (2 Floor, East Wing) Non-fiction 519.6 O7 (Browse shelf) Available 189184

The theory of optimal transportation has its origins in the eighteenth century when the problem of transporting resources at a minimal cost was first formalised. Through subsequent developments, particularly in recent decades, it has become a powerful modern theory. This book contains the proceedings of the summer school 'Optimal Transportation: Theory and Applications' held at the Fourier Institute in Grenoble. The event brought together mathematicians from pure and applied mathematics, astrophysics, economics and computer science. Part I of this book is devoted to introductory lecture notes accessible to graduate students, while Part II contains research papers. Together, they represent a valuable resource on both fundamental and advanced aspects of optimal transportation, its applications, and its interactions with analysis, geometry, PDE and probability, urban planning and economics. Topics covered include Ricci flow, the Euler equations, functional inequalities, curvature-dimension conditions, and traffic congestion.(http://www.cambridge.org/us/academic/subjects/mathematics/geometry-and-topology/optimal-transport-theory-and-applications?format=PB)

There are no comments for this item.

to post a comment.

Powered by Koha