A course in point set topology

By: Conway, John B
Material type: TextTextSeries: Undergraduate Texts in MathematicsPublisher: New York Springer 2013Description: xii, 142 p.ISBN: 9783319023670Subject(s): Mathematics - Topology | Mathematics - GeometryDDC classification: 514 Summary: This textbook in point set topology is aimed at an upper-undergraduate audience. Its gentle pace will be useful to students who are still learning to write proofs. Prerequisites include calculus and at least one semester of analysis, where the student has been properly exposed to the ideas of basic set theory such as subsets, unions, intersections, and functions, as well as convergence and other topological notions in the real line. Appendices are included to bridge the gap between this new material and material found in an analysis course. Metric spaces are one of the more prevalent topological spaces used in other areas and are therefore introduced in the first chapter and emphasized throughout the text. This also conforms to the approach of the book to start with the particular and work toward the more general. Chapter 2 defines and develops abstract topological spaces, with metric spaces as the source of inspiration, and with a focus on Hausdorff spaces. The final chapter concentrates on continuous real-valued functions, culminating in a development of paracompact spaces.
Tags from this library: No tags from this library for this title. Log in to add tags.
    Average rating: 0.0 (0 votes)
Item type Current location Item location Collection Call number Status Date due Barcode
Books Vikram Sarabhai Library
Slot 1369 (0 Floor, East Wing) Non-fiction 514 C6C6 (Browse shelf) Available 181810

This textbook in point set topology is aimed at an upper-undergraduate audience. Its gentle pace will be useful to students who are still learning to write proofs. Prerequisites include calculus and at least one semester of analysis, where the student has been properly exposed to the ideas of basic set theory such as subsets, unions, intersections, and functions, as well as convergence and other topological notions in the real line. Appendices are included to bridge the gap between this new material and material found in an analysis course. Metric spaces are one of the more prevalent topological spaces used in other areas and are therefore introduced in the first chapter and emphasized throughout the text. This also conforms to the approach of the book to start with the particular and work toward the more general. Chapter 2 defines and develops abstract topological spaces, with metric spaces as the source of inspiration, and with a focus on Hausdorff spaces. The final chapter concentrates on continuous real-valued functions, culminating in a development of paracompact spaces.

There are no comments for this item.

to post a comment.

Powered by Koha