Amazon cover image
Image from Amazon.com

Quasi-least squares regression

By: Contributor(s): Material type: TextTextSeries: Monographs on Statistics and Applied Probability 132Publication details: Boca Raton CRC Press 2014Description: xvii, 203 pISBN:
  • 9781420099935
Subject(s): DDC classification:
  • 519.23 S4Q8
Summary: Drawing on the authors’ substantial expertise in modeling longitudinal and clustered data, Quasi-Least Squares Regression provides a thorough treatment of quasi-least squares (QLS) regression—a computational approach for the estimation of correlation parameters within the framework of generalized estimating equations (GEEs). The authors present a detailed evaluation of QLS methodology, demonstrating the advantages of QLS in comparison with alternative methods. They describe how QLS can be used to extend the application of the traditional GEE approach to the analysis of unequally spaced longitudinal data, familial data, and data with multiple sources of correlation. In some settings, QLS also allows for improved analysis with an unstructured correlation matrix. Special focus is given to goodness-of-fit analysis as well as new strategies for selecting the appropriate working correlation structure for QLS and GEE. A chapter on longitudinal binary data tackles recent issues raised in the statistical literature regarding the appropriateness of semi-parametric methods, such as GEE and QLS, for the analysis of binary data; this chapter includes a comparison with the first-order Markov maximum-likelihood (MARK1ML) approach for binary data. Examples throughout the book demonstrate each topic of discussion. In particular, a fully worked out example leads readers from model building and interpretation to the planning stages for a future study (including sample size calculations). The code provided enables readers to replicate many of the examples in Stata, often with corresponding R, SAS, or MATLAB® code offered in the text or on the book’s website.(https://www.crcpress.com/product/isbn/9781420099935)
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Item location Collection Shelving location Call number Status Date due Barcode
Books Vikram Sarabhai Library Rack 28-B / Slot 1403 (0 Floor, East Wing) Non-fiction General Stacks 519.23 S4Q8 (Browse shelf(Opens below)) Available 189294

Drawing on the authors’ substantial expertise in modeling longitudinal and clustered data, Quasi-Least Squares Regression provides a thorough treatment of quasi-least squares (QLS) regression—a computational approach for the estimation of correlation parameters within the framework of generalized estimating equations (GEEs). The authors present a detailed evaluation of QLS methodology, demonstrating the advantages of QLS in comparison with alternative methods. They describe how QLS can be used to extend the application of the traditional GEE approach to the analysis of unequally spaced longitudinal data, familial data, and data with multiple sources of correlation. In some settings, QLS also allows for improved analysis with an unstructured correlation matrix.
Special focus is given to goodness-of-fit analysis as well as new strategies for selecting the appropriate working correlation structure for QLS and GEE. A chapter on longitudinal binary data tackles recent issues raised in the statistical literature regarding the appropriateness of semi-parametric methods, such as GEE and QLS, for the analysis of binary data; this chapter includes a comparison with the first-order Markov maximum-likelihood (MARK1ML) approach for binary data.
Examples throughout the book demonstrate each topic of discussion. In particular, a fully worked out example leads readers from model building and interpretation to the planning stages for a future study (including sample size calculations). The code provided enables readers to replicate many of the examples in Stata, often with corresponding R, SAS, or MATLAB® code offered in the text or on the book’s website.(https://www.crcpress.com/product/isbn/9781420099935)

There are no comments on this title.

to post a comment.