Normal view MARC view ISBD view

Multidimensional data visualization: methods and applications

By: Dzemyda, Gintautas.
Contributor(s): Kurasova, Olga | Zilinskas, Julius.
Material type: materialTypeLabelBookSeries: Springer Optimization and Its Applications Vol. 75. Publisher: New York Springer 2013Description: xii, 250 p.ISBN: 9781441902351.Subject(s): Information visualizationDDC classification: 006.6 Summary: The goal of this book is to present a variety of methods used in multidimensional data visualization. The emphasis is placed on new research results and trends in this field, including optimization, artificial neural networks, combinations of algorithms, parallel computing, different proximity measures, nonlinear manifold learning, and more. Many of the applications presented allow us to discover the obvious advantages of visual data mining—it is much easier for a decision maker to detect or extract useful information from graphical representation of data than from raw numbers. The fundamental idea of visualization is to provide data in some visual form that lets humans understand them, gain insight into the data, draw conclusions, and directly influence the process of decision making. Visual data mining is a field where human participation is integrated in the data analysis process; it covers data visualization and graphical presentation of information. Multidimensional Data Visualization is intended for scientists and researchers in any field of study where complex and multidimensional data must be visually represented. It may also serve as a useful research supplement for PhD students in operations research, computer science, various fields of engineering, as well as natural and social sciences.
List(s) this item appears in: VR_Healthcare Analytics | Big data | VR_Data Analytics, Data Visualization and Big Data
Tags from this library: No tags from this library for this title. Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Current location Item location Collection Call number Status Date due Barcode
Books Vikram Sarabhai Library
Slot 106 (0 Floor, West Wing) Non-fiction 006.6 D9M8 (Browse shelf) Available 181418

The goal of this book is to present a variety of methods used in multidimensional data visualization. The emphasis is placed on new research results and trends in this field, including optimization, artificial neural networks, combinations of algorithms, parallel computing, different proximity measures, nonlinear manifold learning, and more. Many of the applications presented allow us to discover the obvious advantages of visual data mining—it is much easier for a decision maker to detect or extract useful information from graphical representation of data than from raw numbers.

The fundamental idea of visualization is to provide data in some visual form that lets humans understand them, gain insight into the data, draw conclusions, and directly influence the process of decision making. Visual data mining is a field where human participation is integrated in the data analysis process; it covers data visualization and graphical presentation of information.

Multidimensional Data Visualization is intended for scientists and researchers in any field of study where complex and multidimensional data must be visually represented. It may also serve as a useful research supplement for PhD students in operations research, computer science, various fields of engineering, as well as natural and social sciences.

There are no comments for this item.

Log in to your account to post a comment.

Powered by Koha